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Abstract

The Sierpiński d-dimensional tetrahedron ∆d is the generalization of the most known Sierpiński gasket which appears
in many fields of mathematics. Considering the sequences of polytopes

{
∆d

n

}
n

that generate ∆d, we find closed formulas

for the sum vd, k
n of the measures of the k-dimensional elements of ∆d

n, deducing the behavior of the sequences
{
vd, k

n

}
n
.

It becomes quite clear that traditional analysis does not have the adequate language and notations to go further, in an
easy and manageable way, in the study of the previous sequences and their limit values; contrariwise, by adopting the
new computational system for infinities and infinitesimals developed by Y.D. Sergeyev, we achieve precise evaluations
for every k-dimensional measure related to each ∆d, obtaining a set W =

{
vd, k
©1

}
d, k

of values expressed in the new
system, which leads us to a Diophantine problem in terms of classical number theory.
To solve it, we work with traditional tools from algebra and mathematical analysis. In particular, we define two kinds
of equivalence relations on W and we get a detailed description of the partition of various of its subsets together with
the exact composition of the corresponding classes of equivalence.
Finally, we also show as the unique Sierpiński tetrahedron for each dimension d, is replaced, if we adopt Sergeyev’s
framework, by a whole family of infinitely many Sierpiński d-dimensional tetrahedrons.

Keywords: Sierpiński d-tetrahedron, Fractals, Geometry of polytopes, Numerical infinities and infinitesimals,
Grossone, Number theory, Diophantine nonlinear systems.

1. Introduction

The Sierpiński gasket, also called the Sierpiński triangle, is one of the most known and very popular fractal set; it
has the exterior shape of an equilateral triangle, and is subdivided recursively into smaller similar triangles, from which
the central ones are removed at each step. It has been originally constructed as a curve by the Polish mathematician
Wacław Sierpiński one hundred years ago ([27, 28]), but it appeared as a decorative pattern many centuries before, for
example in Italian medieval art (as in the Cosmati mosaics, see [30, pp. 43, 873]) and in particular, in several Roman
churches and Basiliche from the 11th century (see [7]).
From the original work of Sierpiński, what is known as the Sierpiński arrowhead curve is a continuous map of the
line segment [0, 1] ⊂ R whose image is a fractal curve identical to the Sierpiński gasket; but there are dozens of
other different ways to build the Sierpiński gasket and dozens of contexts, in mathematics and other disciplines, where
it comes out and finds a variety of applications. For example, it arises from cellular automata (elementary cellular
automaton rule 60, 90, 102 and many similar others; see [30] for their extensive descriptions), from chaos games and
chaos theory, from puzzle graphs ([26]), from Pascal’s triangle, etc., and it has many uses and applications ranging
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from engineering and technology like fractal antennas (see [2]), to programming and computer science, and also, for
instance, even in music ([13]).

In this paper we study the generalization of the Sierpiński triangle in each dimension d > 2: the construction
of this fractal is well know for every d (for a comprehensive introduction see for example [20], whose first part is
entirely devoted to such fractal in dimension 2, 3 and Section 3.8 to general d, or the paper [24] for connections with
matrices, digits and “inner products”) together with some of its main characteristics as the fractal dimension (see
[19]). Although different sources deal with the general d-dimensional case, they are, however, very few in comparison
with all the literature on the cases with d = 2 and d = 3: for instance, the formula obtained in Proposition 2.1, which
represents the starting point for the investigations of this paper, seems itself not known before.
The core of the article is, instead, the emergence of a Diophantine nonlinear system with a rather complicated formu-
lation (see (24)) from an unsuspected context as d-dimensional fractal geometry: it is interesting per se for number
theory, but represents much more than a Diophantine problem because it derives from the application to such fractal
of a new computational methodology, recently introduced by Y.D. Sergeyev, which throws new light on the subject.
In particular, in contexts similar to ours, this method allow us to consider k-dimensional elements of a fractal object
and to determine their exact measures as it was an ordinary d-polytope; more generally instead, such a new system
allows one to work numerically with infinities and infinitesimals in a handy way and, as it is easy to imagine, it is
particularly useful in relation to the behavior of models or objects when they are viewed at “infinity”.

For detailed introduction surveys on this new numerical system, the reader can see [33, 37, 42, 43] and the book
[31] written in a popular way. We inform that this computational methodology has already been successfully applied in
optimization and numerical differentiation (see [11, 12, 38, 49]) and in a number of other theoretical and computational
research areas such as cellular automata (see [9, 10] and in the context of [3] under investigation), Euclidean and
hyperbolic geometry (see [21, 22]), percolation (see [17, 18, 29]), fractals (see [5, 29, 32, 34, 40, 44]), the Riemann
zeta function, infinite series and Z-transform (see [6, 35, 39, 48]), the first Hilbert problem, Turing machines and
supertasks (see [25, 36, 45, 46]), numerical solution of ordinary differential equations (see [1, 23, 41, 47]), etc.

As regards the structure of the present article and some details on its content, in Section 2 we introduce the
Sierpiński tetrahedron ∆d in any dimension d > 2 together with its generating sequence of d-polytopes

{
∆d

n
}
n. Then

we found, by the above mentioned Proposition 2.1, closed formulas depending on n, for the sum of the measures of
the k-dimensional elements of ∆d

n, and this gives the starting point of the research in this paper. First we deduce the
limit measure properties of ∆d by using classical analysis: this means that, when d and k vary, we obtain a family of
elements denoted by

{
vd, k
∞

}
, but whose value is zero or +∞ in almost all the cases. Despite they arise from different

kinds of measures, in different dimensions, and they carry different meanings and contents, when two of them are both
zero or both +∞, they are clearly indistinguishable using the notations of traditional analysis.

In Section 3 instead, we consider the correspondent values of
{
vd, k
∞

}
but using the new computational system: they

are denoted by vd, k
©1 and their analysis opens new features and appears from the beginning, full of meaning and rich

in interpretations. In addition, contrary to what happens to the values of the family
{
vd, k
∞

}
, the elements vd, k

©1 are very
often quite different from each other as we will realize in a few simpler cases from (9) and (10), but it is not trivial to
say to what point they are really different.
It is also quite evident that some pairs of infinities or infinitesimals arising from (9) and (10), are much more similar
than others and this makes us want a sort of classification that emphasizes affinities and relationships. For this purpose,
then, we define two equivalence relations between the elements vd, k

©1 (and in general among the numbers of the new
computational system, see Definition 3.1), one stronger that the other, and we give by Theorem 3.1, the partition into
equivalence classes of the set of the elements vd, k

©1 , together with complete information as the number of classes, a set
of “minimal” representatives, etc. In particular, in Theorem 3.1 (ii) we obtain that the equivalence classes relative to
the stronger relation are all constituted of a single element, and, as consequence, we conclude that the elements of
the new system vd, k

©1 are all distinct unlike the traditional case (see Corollary 3.1). Another consequence is that the
Diophantine nonlinear system (24) we mentioned earlier, has no nontrivial integer solutions (Corollary 3.2).

Section 4 changes the way of arguing and shows as the unique Sierpiński tetrahedron in dimension d, is replaced,
if we use the new computational system, by a whole family of infinitely many Sierpiński d-dimensional tetrahedrons,
that give rise to a still larger family of related values vd, k

r,©1 . We end the section by suggesting some further directions
of research and how it is possible to generalize the results obtained in the previous sections.

Finally, Section 5 is devoted to the conclusions.
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Regarding the notations, we advice that, as usual, we will write indifferently
{
an

}
n, {an}, or sometimes simply an,

to denote a sequence. Moreover, the symbol N denotes the set of positive integers for us, whilst N0 includes also zero.

2. The high-dimensional Sierpiński tetrahedron

The generalization of a triangle or tetrahedron to arbitrary dimension d > 0, is what is called a d-simplex or,
less commonly, a d-dimensional tetrahedron; in the following we will often say just a d-tetrahedron, for short. More
precisely, a d-simplex is a d-dimensional polytope which is the convex hull of d + 1 affinely independent points in
RD (D > d) and, of course, it is called regular if all its edges have the same length.
The use of simplexes is widespread in many areas of mathematics like algebraic geometry, algebraic topology and es-
pecially in singular homology; but we advise the reader that what in literature is called the standard d-simplex is differ-
ent from our notion of unitary d-simplex or unitary d-tetrahedron, denoted by ∆d

0 and widely used in the following. In
fact, whilst the first has edge length

√
2 because it is the convex hull of the standard basis (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

of Rd+1, that is(x0, . . . , xd) ∈ Rd+1

∣∣∣∣∣∣ d∑
i=0

xi = 1 and xi > 0 for all i = 0, . . . , d

 ,
the second, ∆d

0, is a d-tetrahedron whose edges have all unitary length. More in general, if we denote by ∆d
0(l) a regular

d-tetrahedron with sides lengths equal to l ∈ R+
0 , we recall from elementary geometry that its d-volume is given by

Vold
(
∆d

0(l)
)

=

√
d + 1

d!
√

2d
· l d. (1)

Moreover, if 0 6 k 6 d, every k-dimensional face (briefly k-face) of a d-simplex is a k-simplex itself, and since any
k + 1 points from the d + 1 vertices of a d-simplex identify uniquely a k-face, then, the number f d(k) of the k-faces of
a d-simplex is given by the binomial coefficient

f d(k) =

(
d + 1
k + 1

)
(2)

(for the preceding and other similar properties see, for example, [4, 8, 16]).
The Sierpiński d-dimensional tetrahedron is one of the most simple fractals in dimension d, and it is well known,

but not so studied in concrete applications, of course, as its much more common two- and three-dimensional versions,
often called the Sierpiński gasket, sieve, triangle and the Sierpiński pyramid, tetrix, respectively.
We denote the Sierpiński d-tetrahedron by ∆d, and we sketch briefly, in the following, the easiest way to obtain it by
a sequence of d-dimensional polytopes.
Let d > 2 be a fixed integer; to construct such a sequence

{
∆d

n
}
n we start with the unitary d-simplex ∆d

0 we talked
above. Then we define ∆d

1 as the union of d + 1 regular tetrahedra of side 1/2, each one built in a corner of ∆d
0 and

continue iteratively the process. More precisely, we pose by convenience

ln := (1/2)n , for all n ∈ N0, (3)

and we can adopt two equivalent inductive constructions at the generic step n > 2 to obtain ∆d
n: the first one consists

to repeat a copy of ∆d
1, scaled by ln−1 = (1/2)n−1, in each small tetrahedron of side ln−1 constituting ∆d

n−1, instead the
second construction consists to replicate a copy of ∆d

n−1, scaled by l1 = 1/2, in each of the d + 1 tetrahedrons of side
l1 composing ∆d

1.
Finally, for every d > 2, the d-dimensional Sierpiński tetrahedron ∆d is defined as the limit of ∆d

n for n approaching
+∞, i.e. there exists a unique compact set ∆d which is the limit of the compact sets ∆d

n. Moreover note that ∆d is also
equal to the intersection

⋂
n∈N ∆d

n.
There are several other ways to construct the Sierpiński tetrahedron in dimension d; for example, for a different
approach the interested reader can consult [20].

Now we want to attach to each of such fractals ∆d, some sequences of real numbers
{
vd, k

n
}
n which give a k-

dimensional valuation of the elements of the generating sequence
{
∆d

n
}
n. More precisely we pose the following
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Definition 2.1. For all integers d > 2 and n > 0, let vd, d
n be the d-volume of ∆d

n.
Moreover, if 0 6 k < d, let vd, k

n be the sum of the k-volumes of the k-dimensional elements (briefly k-elements) lying
on the (d − 1)-dimensional boundary surface of ∆d

n.

As examples of the previous definitions, note that, if d = 3 and k = 2, v3,2
n is the surface area of ∆3

n, instead, if
k = 1, v3,1

n is the sum of the 1-volumes of the 1-dimensional elements on the surface of ∆3
n, that is, the sum of the

length of its edges. Proposition 2.1 below gives a general expression for vd, k
n , but first note that, if N(d)

n is the number
of tetrahedra of side ln which make up ∆d

n, then

N(d)
n = (d + 1)n, (4)

for every n > 0.

Proposition 2.1. For all n > 0 and d > 2, we have

vd, k
n =



√
k + 1

k!
√

2k
·

(
d + 1
k + 1

)
·

(
d + 1

2k

)n

if 1 6 k 6 d,

(d + 1)n+1 + d + 1
2

if k = 0.

(5)

Proof. If 1 6 k 6 d, then vd, k
n can be computed multiplying the number of d-tetrahedra building ∆d

n, by the number of
k-faces of a single d-tetrahedron, by the k-volume of a regular k-tetrahedron of length side ln; in symbols, this gives
(see (1), (2), (3) and (4))

vd, k
n = N(d)

n · f d(k) · Volk
(
∆k

0(ln)
)

=

√
k + 1

k!
√

2k
·

(
d + 1
k + 1

)
·

(
d + 1

2k

)n

,

and we have shown the upper part of (5).
To prove the second branch of (5), it is easy to determine a recursive formula for vd, 0

n , and then use it iteratively or
by induction to obtain the wanted closed expression. Instead, here we prefer to give a different proof, which is very
direct and sharp: we know that ∆d

n is made up of N(d)
n tetrahedra of side ln, and note that each of the d + 1 vertices of

such a small tetrahedron, is a connecting point between itself and exactly one other tetrahedron. The only exception
is given by the exterior d + 1 vertices of ∆d

n, that is the ones of ∆d
0. Hence we can write

vd, 0
n =

(
N(d)

n · (d + 1) + d + 1
)
·

1
2

=
(d + 1)n+1 + d + 1

2
,

for all d > 2.

For every d > 2 and 0 6 k 6 d, we pose

vd, k
∞ := lim

n→+∞
vd, k

n (6)

and denote by dim(∆d) the fractal dimension of ∆d. For comprehensive references about the general theory of the
dimension of a fractal, the reader can see [14] or [15]; in our particular case, it is simple to prove that

dim
(
∆d

)
=

ln(d + 1)
ln 2

= log2(d + 1), (7)

for every d > 2 (see, for example, [19]).
We close this section with few immediate consequences of Proposition 2.1 and some considerations: it is trivial

that the sequence vd, k
n converges if and only if d 6 2k − 1, and converges to a nonzero value if and only if k > 2 and

d = 2k − 1; in the last case the limit value is

v2k−1, k
∞ =

√
k + 1

k!
√

2k
·

(
2k

k + 1

)
. (8)

Note, moreover, that we obtain the following interesting corollary.
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Corollary 2.1. Let d > 2 be a fixed integer. Then, there exists a nonnegative integer k 6 d such that vd, k
∞ is finite and

nonzero if and only if the fractal dimension of ∆d is an integer.

It seems to be an intriguing and fascinating tool to investigate for which fractals, arising as limit of a sequence of
d-dimensional polytopes, a statement similar to Corollary 2.1 holds.

3. The exact measures of the d-dimensional Sierpiński tetrahedron through infinite and infinitesimal compu-
tation

In the previous section we computed vd, k
n for finite values of n and we obtained that vd, k

∞ is zero, or a positive
number equal to (8), or +∞: that is all what the notations of classical analysis can express. It is also quite obvious
that the various zeros and infinities emerging in this way, have not the same meaning, because they arise from a
computation of a k-dimensional volume related to a d-dimensional object where k and d are different from case to
case. For example, v2,0

n , representing the infinite grow of the number of vertices of ∆2
n (the generating sequence of

the Sierpiński gasket) has a completely different meaning from v2,1
n representing the grow of its perimeter, from v4,2

n
which comes from a 2-dimensional area, or from v72,6

n which is related to a 6-volume in a 72-dimensional space, etc.
But traditional analysis, because of his language and notations, fails to highlight these differences in a simple and
computationally efficient way, and such infinite quantities are all written likewise by using the same symbol +∞.
An analogous discussion applies also to zeros arising from the limit (6), and several other evidences provided in
the papers mentioned above, reinforce the reflection of how ordinary computational systems are, sometimes, not so
convenient to describe effectively and to treat many phenomena occurring in contemporary mathematics, like those
we are speaking about.

From here on, we assume that the reader is familiar with the new computational method developed by Y.D.
Sergeyev, as explained in the Introduction; we recall that one can easily consult [31, 33, 37, 42, 43] for detailed
surveys and introductive essays on the subject. In this section we show as, adopting this new computing system for
infinities and infinitesimals quantities based on the new entity ©1 called grossone, we can give a rich description of
the behavior at infinity of the previous constructive processes as, and maybe more than, the one at finite.
We begin by noting that if we execute©1 steps in the construction of ∆d, we obtain the following values for the related
k-volumes

vd, k
©1 =

√
k + 1

k!
√

2k

(
d + 1
k + 1

)
·

(
d + 1

2k

)©1
(9)

in the case 1 6 k 6 d, and

vd, 0
©1 =

d + 1
2
· (d + 1)©1 +

d + 1
2

(10)

for k = 0 (see Proposition 2.1). Obviously, if we carry out a different (infinite) number of steps like N = ©1 − 4 or
N = 2©1 + 3, then we obtain different fractals

(
that we be can denoted, for example, by ∆d

©1 −4 and ∆d
2©1 +3, respectively,

to distinguish them from ∆d = ∆d
©1

)
and consequently this yields different related values vd, k

©1 −4 and vd, k
2©1 +3 in the place

of (9) and (10). However, for the sake of simplicity and to not weigh down the notations too much, we will do most
of the considerations and investigations in this article limiting ourselves to the N = ©1 case (see also Section 4 for
further discussions and suggestions of research on much more general cases).

Now, note for example, that none of the expressions in (9) and (10) is longer zero as so many limit values in (6).
To understand better the extent of change obtained by using the new system, we think it could be useful for the reader,
to write the first few explicit values of vd, k

∞ , and compare them with the correspondent ones of vd, k
©1 .

As he can easily see by direct evaluation, the first few elements obtained from (9) and (10) are actually distinct,
but this does not mean that, continuing to compute the subsequent elements of the family

{
vd, k
©1

}
, they will be all

distinct one from the others. This is rather interesting: although we use a powerful numerical system that allows a
great differentiation for infinite and infinitesimal values, it may still happen that two values remain indistinguishable,
and the occurrence of such a thing is certainly worthy of note and of further attentions on the underlying geometry
producing this phenomenon.
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At this point it should be clear that there is no reason to decide a priori a case like the one just exposed, but to
further convince the reader and to stimulate a deeper reflection on the problem, let us consider also the following
example.

Example 3.1. Let l ∈ R+ and d any integer greater than one. We already defined, just before equation (1), the
symbol ∆d

0(l): starting from the last, rather than ∆d
0 = ∆d

0(1), we can construct, by a complete analogy, a sequence of
polytopes

{
∆d

n(l)
}
n, a fractal ∆d(l) scaled by a factor l with respect ∆d, and for every integer k ∈ {0, 1, . . . , d} we can

attach a sequence of real numbers
{
vd, k

n (l)
}
n and a value vd, k

©1 (l) expressed in the new system. It is easy to rewrite a
generalization of Proposition 2.1 just by noting that

vd, k
n (l) = vd, k

n · lk

for all integers 0 6 k 6 d, and consequently

vd, k
©1 (l) = vd, k

©1 · l
k.

Now, by a short computation it is easy to see that, taking for instance l =
√

3/7 instead of l = 1, we find the following
coincidence of values

v3,1
©1

 √3
7

 = v7,2
©1

 √3
7

 , (11)

and if we pose l =
√

3/5, we have

v2,1
©1

 √3
5

 = v5,2
©1

 √3
5

 . (12)

It means that in a family analogue to
{
vd,k
©1

}
, obtained by taking l =

√
3/7 instead of l = 1, we have at least two

coincident values (the ones appearing in (11)), and the same happens by taking l =
√

3/5 as well (the ones in (12)).

Of course we can extend the previous example with many other cases because the value of l is computed inten-
tionally to have a convergence of at least two values of vd, k

©1 (l). But we inform the reader that we have some examples
arising from d-dimensional fractals more complex than ∆d, in which many values (sometimes infinitely many) of the
kind vd, k

©1 all coincide spontaneously to a single numerical©1 -based expression: it is not possible to discuss them here,
but probably, they will appear with some details in a successive paper. In any case, for our purposes, it is sufficient to
consider what happens in (11) and (12).

In conclusion, there are now sufficient reasons to try to understand better which relations exist among the elements
vd, k
©1 : not only if some of them coincide, but it is also interesting to investigate which of them are “closer” than others,

which are infinities or infinitesimal of a “similar kind”, etc. For instance, it is immediate to realize that v2,2
©1 is an

infinitesimal with an expression that “looks like” v5,3
©1 , or v3,3

©1 is another that “looks like” v7,4
©1 ; but the last comes from

a 4-volume of 7-dimensional object so, before using new notations, it is difficult to see analogies with v3,3
©1 which is

the ordinary 3-volume of a (fractal) object in the usual 3-dimensional space R3.
The same happens for infinities, and maybe, it is also more evident: v3,0

©1 is an infinite that “looks like” v7,1
©1 , but the

first comes from counting a set of points, i.e. the vertices of an object in R3, while the second arises from the measure
of a 1-dimensional length related to an object in R7.
We remark how the last as the previous ones, although being simple examples, are rather hidden if no notations and
new methods are used to highlight these similarities.

We begin our analysis on the values vd, k
©1 by posing the following general definition.

Definition 3.1. Let α and β be any nonzero quantities expressed in the new computational system.

(i) α and β are said of the same order (in symbols ord(α) = ord(β), or α ∼ord β) if their quotient is finite (positive
or negative) but not infinitesimal. That is, if there exist two finite natural numbers n,m ∈ N such that 0 < 1/n <
|α/β| < m.
In case α, β are both infinite or infinitesimal quantities, they are also called infinities of the same order or
infinitesimals of the same order, respectively.
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(ii) α and β are said equivalent (in symbols α ∼eq β, or simply α ∼ β) if their quotient is 1 up to infinitesimals. This
means that 1 − 1/n < α/β < 1 + 1/n for all finite n ∈ N.
As before, in case α, β are infinite or infinitesimal quantities, they are also called equivalent infinities or equiv-
alent infinitesimals, respectively.

Example 3.2. To give some examples on the previous definitions, for the purposes of this paper, we can just consider
elements with very simple expressions, or at most of the kind of the vd, k

©1 .

(1) ©1 2 + 1
3©1 − 3 is an infinite not of the same order of©1 , obviously.

(2) 5 − 2©1 −3 and −2+©1 −1 are two finite elements with the same order, but not equivalent.

(3)
1

3©1 2 −©1
and

2
2©1 2 − 3 + 5©1 −2 are two infinitesimals of the same order of ©1 −2, but only the second is

equivalent to it as well.

(4) If d is any integer > 2, then (d + 1)©1 +5 has the same order of vd, 0
©1 , but they are not equivalent (see (10)); instead

(1/2) · (d + 1)©1 +1 is an infinity equivalent to vd, 0
©1 , but they are not equal numbers because they differ by a finite

quantity.

(5) Assume that α = am ©1 m + am−1©1 m−1 + . . . + as ©1 s and β = bn ©1 n + bn−1©1 n−1 + . . . + bt ©1 t, where m > s,
n > t are integers, and ai, b j are real numbers with the leading coefficients am, bn different from zero.
Then ord(α) = ord(β) if and only if m = n and, in particular, they are infinities of the same order if m = n > 0
or infinitesimals of the same order if m = n < 0. Moreover, α and β are equivalent if and only if m = n and
am = bn. (Obviously, it is enough to note just that α ∼eq am ©1 m and β ∼eq bn ©1 n.)

The interested reader can find less trivial examples by himself, also using references like [5] in which are discussed
some power series expansions in infinitesimal elements of the new system, which arise from a geometric context of
space-filling curves.

It is trivial that both the relations introduced in Definition 3.1 (i) and (ii) are equivalence relations, so for example,
we can ask about the equivalence class of vd, k

©1 , using the relation ∼ord or ∼eq.
We will soon see as Corollary 3.1, which is an immediate consequence of Theorem 3.1 (ii), states that the elements
v d, k
©1 are actually all distinct; but Theorem 3.1 establishes much more. In fact, our purpose is to give information about

the partition of the following sets

Vd :=
{
vd, k
©1

∣∣∣∣ 0 6 k 6 d
}
, Wd :=

d⋃
i=2

V i, for all d > 2, and W :=
⋃
d>2

Vd, (13)

in equivalence classes. We denote the equivalence class of vd, k
©1 in W, with respect the relation ∼ord or ∼eq, by

[
vd, k
©1

]
ord

and
[
vd, k
©1

]
eq

, respectively.

Note, moreover, that we can likewise consider any family
{
vd, k

N
}
, where N is another infinite number other than©1 , or

also the union of many such families, but this is beyond the scope of the present paper.
Before to state Theorem 3.1, we write in the following lemma an important consequence of the equations (9) and

(10).

Lemma 3.1. For all d > 2 and 0 6 k 6 d we have ord
(
vd, k
©1

)
= ord

(d + 1
2k

)©1  . Moreover

vt, h
©1 ∼ord vd, k

©1 if and only if t + 1 = 2h−k · (d + 1). (14)
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The proof of the previous lemma is an easy check we leave to the reader. So now we are ready to state the
main theorem: part (i) concerns the first equivalence relation and part (ii) the second. In particular, part (i) gives full
information on the number of equivalence classes existing in Wd for every d > 2 (see (15)), then for every class in
W it gives the smallest representative (see (16)) and, finally, starting from one of such representatives, it yields an
explicit writing for the other elements belonging to its class (see (17)).

Theorem 3.1.

(i) Let d > 2 and denote by νd the number of equivalence classes in the set Wd with respect the equivalence
relation ∼ord . Then, if dae is the ceiling of a ∈ R, we have

νd =


3 if d = 2,

3d2 + 9d + 6
8

+
(−1)d

4
·

⌈
d + 1

2

⌉
if d > 3.

(15)

Moreover, a system of minimal (i.e. with d, k minimal) representatives of the classes in W is

RW :=
⋃{

Vd
∣∣∣ d even > 2 or d = 3

}
∪

{
v t, h
©1

∣∣∣∣∣ t odd > 5 and h = 0 or
t + 3

2
6 h 6 t

}
, (16)

and for every v t, h
©1 ∈ RW , its equivalence class can be written as

[
v t, h
©1

]
ord

=

{
v 2 j−h(t+1)−1, j
©1

∣∣∣∣∣ j ∈ N0, j > h
}
. (17)

(ii) Each equivalence class in W under the relation ∼eq consists of a single element.

Proof. (i) We begin the proof of (i) by proving the last assertion, but first of all, we want to remark that the word
“minimal”, of course, does not refer to the non-redundancy of (16) which is implicit in the definition of a system, but
it means that the representatives are chosen with d and k minimal.
From condition (14) of Lemma 3.1, it is clear that if two elements of the same set Vd have equal order, then they must
to coincide. Now, we think that it is enlightening to write explicitly how some of the first classes of equivalence are
composed: recalling the cited lemma, we have[

v2, 0
©1

]
ord

=
{
v3·2h−1, h
©1

∣∣∣ h ∈ N0

}
=

{
v2, 0
©1 , v5, 1

©1 , v11, 2
©1 , v23, 3

©1 , . . .
}
,[

v2, 1
©1

]
ord

=
{
v3·2h−1−1, h
©1

∣∣∣ h ∈ N
}

=
{
v2, 1
©1 , v5, 2

©1 , v11, 3
©1 , v23, 4

©1 , . . .
}
,[

v2, 2
©1

]
ord

=
{
v3·2h−2−1, h
©1

∣∣∣ h > 2
}

=
{
v2, 2
©1 , v5, 3

©1 , v11, 4
©1 , v23, 5

©1 , . . .
}
,

[
v3, 0
©1

]
ord

=
{
v4·2h−1, h
©1

∣∣∣ h ∈ N0

}
=

{
v3, 0
©1 , v7, 1

©1 , v15, 2
©1 , v31, 3

©1 , . . .
}
,[

v3, 1
©1

]
ord

=
{
v4·2h−1−1, h
©1

∣∣∣ h ∈ N
}

=
{
v3, 1
©1 , v7, 2

©1 , v15, 3
©1 , v31, 4

©1 , . . .
}
,

. . . . . . . . .

(18)

For t odd > 5, the classes[
v t, 1
©1

]
ord
,

[
v t, 2
©1

]
ord
, . . . ,

[
v t, (t+1)/2
©1

]
ord

(19)

are the only yet present in W t−1; in fact, it is a simple check left to the reader, to show that for t, h fixed with 0 6 h 6 t
and 2 6 h, the equation

t = (d + 1) · 2h−k − 1 (20)
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is resoluble with respect to d, k such that 0 6 k 6 d < t and d > 2, if and only if t is an odd integer > 5 and
1 6 h 6 (t + 1)/2 , as we claimed implicitly in (19). Hence (16) is demonstrated and also (17) is clear.
At this point, to prove (15) we can use an inductive argument on d. If d is equal to 2 or 3, it is trivially true; now,
assuming the formula true for d − 1 we want to verify it for d > 4. From the above discussion we can write

νd = νd−1 +

(
3
4

+ (−1)d ·
1
4

)
· (d + 1) (21)

for all d > 4; hence, using the inductive hypothesis and noting that d + 1 − dd/2e = d(d + 1)/2e, we obtain

νd =
3(d − 1)2 + 9(d − 1) + 6

8
+

(−1)d−1

4
·

⌈
d
2

⌉
+

3
4

(d + 1) + (−1)d ·
1
4

(d + 1)

=
3d2 + 9d + 6

8
+

(−1)d

4
·

⌈
d + 1

2

⌉
,

and the inductive step is proved.

(ii) Let d any integer > 2 and consider the equivalence class
[
v d, k
©1

]
ord

; to prove (ii) it is sufficient to show that any

two elements in
[
v d, k
©1

]
ord

are not equivalent according to Definition 3.1 (ii).

If k > 1, from (17) and (9), we can write the class of v d, k
©1 as follows

[
v d, k
©1

]
ord

=

{
v 2h−k(d+1)−1, h
©1

∣∣∣∣∣ h > k
}

=


√

h + 1

h!
√

2h

(
2h−k(d + 1)

h + 1

)
·

(
d + 1

2k

)©1 ∣∣∣∣∣∣ h > k

 , (22)

instead, if k = 0, from (9) and (10), we have[
v d, 0
©1

]
ord

=
{
v d, 0
©1

}
∪

{
v 2h(d+1)−1, h
©1

∣∣∣∣∣ h > 1
}

=

{
d + 1

2
· (d + 1)©1 +

d + 1
2

}
∪


√

h + 1

h!
√

2h

(
2h(d + 1)

h + 1

)
· (d + 1)©1

∣∣∣∣∣∣ h > 1

 . (23)

Now, pose x = h − k and consider the family of sequences ad, k : N0 → R depending from the parameters d, k, and
defined by

ad, k(x) :=

√
k + 1 + x

(k + x)!
√

2k+x

(
2x(d + 1)
k + 1 + x

)
.

Note that ad, k(x) assumes all the values appearing as coefficient of
(
(d + 1)/2k

)©1
in (22) and (23), with the exception

of (d + 1)/2 which is the coefficient of (d + 1)©1 in the element in the first set of (23); since ad,0(0) = d + 1 > (d + 1)/2,
to prove our thesis, it is sufficient to show that the sequences ad, k(x) are strictly increasing as functions of x ∈ N0, for
any choice of the parameters d, k.

To do this, we can study the function ad, k(x) by extending, as usual, the discrete factorial to complex numbers and
by using the well known gamma function Γ(x), beta function B(x) and digamma function ψ(x) with their properties.
But here we want to give a more elementary proof which uses only techniques of basic calculus.
Note hence that, for all d, k, x, we have

ad, k(x + 1)
ad, k(x)

=

√
k + 2 + x
k + 1 + x

·
1

√
2 (k + 1 + x)

·

(
2x+1 (d + 1)

k + 2 + x

)
·

(
2x (d + 1)
k + 1 + x

)−1

>
1

√
2 (k + 1 + x)

·

(
2x+1(d + 1)

k + 2 + x

)
·

(
2x (d + 1)
k + 1 + x

)−1
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>
1

√
2 (k + 1 + x)

·

k+x∏
i=0

2x+1(d + 1) − i

k+x∏
i=0

2x(d + 1) − i

·
2x+1(d + 1) − (k + 1 + x)

k + 2 + x

>
1

√
2 (k + 1 + x)

· 2 k+1+x ·
2x+1(d + 1) − (k + 1 + x)

k + 2 + x
,

and, if we define the function ϕd, k by

ϕd, k(x) :=
2 k+1+x ·

(
2x+1(d + 1) − (k + 1 + x)

)
√

2 (k + 1 + x)(k + 2 + x)
,

it is sufficient to show that ϕd, k(x) > 1 for every d, k, and any x ∈ N0. We leave this check to the reader, suggesting
him to treat previously the cases ϕd, k(0), ϕ2, 2(1), ϕ3, 3(1) and ϕ2, 2(2), and to use the following inequality otherwise

ϕd, k(x) >
(k + 2 + x) ·

(
(x + 2)(d + 1) − (k + 1 + x)

)
√

2 (k + 1 + x)(k + 2 + x)
=

dx + 2d − k + 1
√

2 (k + 1 + x)
.

Note that, in the preceding theorem, the ©1 -based system is present only at the notational level; we can avoid
completely its use provided that appropriate, but probably heavier, notations are introduced.
As previously announced, a trivial consequence of part (ii) of Theorem 3.1 is the following

Corollary 3.1. The elements vd, k
©1 are all distinct for every d > 2 and 0 6 k 6 d.

The problem of deciding whether there is coincidence of values in the set W, can also be expressed in terms of
pure number theory: in the case k, h > 1, it is in fact equivalent to find nontrivial integer solutions of the following
nonlinear Diophantine system

√
k + 1

k!
√

2k
·

(
d + 1
k + 1

)
=

√
h + 1

h!
√

2h
·

(
t + 1
h + 1

)
d + 1

2k =
t + 1
2h

. (24)

But to prove the nonexistence of such solutions of a Diophantine problem like (24), is a non trivial issue; for
example, by using the most powerful computer algebra systems or scientific computational software available today
like, for instance, Mathematica

r

11.0 by Wolfram Research Inc. or many others, it is not possible to obtain any answer
except for very small values of d and t cause the complexity of (24). Instead, as trivial consequence of Theorem 3.1
(ii), we can more precisely state

Corollary 3.2. There are no integer solutions (d, t, k, h) ∈ N4 of the system (24), such that 1 6 k 6 d, 1 6 h 6 t and
2 6 d < t.

Problems like the one solved by the previous corollary, are interesting by themselves for number theory, but it
is difficult to pose such problems independently and to write a system which is interesting to study like (24), if it
does not arise from some external source as, in this case, from fractal geometry and especially from the use of new
notations offered by Sergeyev’s system. This in particular means that it is possible to apply the example of this paper
to many other geometrical entities and in many other contexts, generating a great deal of new problems.
Note moreover that not only the conception of a so complex system like (24), but also the method of proof used by us
in Theorem 3.1, is inspired by geometry and by the notations from the new system. In fact, one who does not know
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the geometric meaning of the problem (24), to solve it, would probably try a totally different way like, for example,
that of studying the linear independence over Q of the two following roots (see the first equation of (24))√

2h(k + 1) and
√

2k(h + 1) .

Instead, as we have already said, our demonstration method focuses on achieving a classification of the set W that
gives us much more information on the fractal geometry of the Sierpiński’s d-tetrahedron, than the simple solution
of the problem (24). As a further example, note that W is clearly a totally ordered set, but the explicit relation is
not obvious at first sight. Another immediate consequence of Lemma 3.1 and of the proof of Theorem 3.1 (ii), is an
express rule to order the elements of W, as the following

vt, h
©1 > vd, k

©1 if and only if
{

t > 2h−k · (d + 1) − 1 or
t = 2h−k · (d + 1) − 1 and h > k

, (25)

where “>” has the obvious meaning also in the new system.

4. A family of infinitely many Sierpiński d-dimensional tetrahedra

From the previous section it is clear the great contribution by the new computational system to innovate and to
bring with new lights many traditional tools. We conclude the paper with an important observation which gives one
more evidence.

Recalling the construction of ∆d, it is obvious that if we begin the building process from the simplex ∆d
0 or a few

steps ahead, the final result, that is the fractal ∆d, is the same in both cases; but what is a so trivial fact in traditional
analysis is no longer true employing a more precise numerical system which is able to take into account the subtle
difference from a number of steps equal, for example, to the elements in N or in N − {1}. In fact, as explained in more
details in [34] and [44], the new system distinguishes and considers as different the fractals obtained after ©1 steps
starting from some ∆d

r or some ∆d
s (where r , s), as well as the fractals ∆d

©1 +2 and ∆d
©1 −5.

Hence, for each d > 2, there is not only a unique d-dimensional Sierpiński tetrahedron, but we can observe a family
of infinitely many d-dimensional Sierpiński tetrahedra.

In this regard, we denote by ∆d
r, n, r, n ∈ N0, d > 2, the d-dimensional polytope resulting from n iterations starting

from ∆d
r ; the definition of vd, k

r, n and vd, k
r,©1 are clearly the same as those of vd, k

n and vd, k
©1 given in the previous sections,

but starting from ∆d
r rather than ∆d

0. Obviously, looking only at the numerical results relative to finite values of r, n, it
is trivial that vd, k

r, n = vd, k
r+n and there would be no need to introduce new notations in this way; but instead, it is important

to write vd, k
r, n and vd, k

r,©1 to take separate, in the second right subscript, the number of steps done in the considered
construction from the starting configuration and to avoid confusion.
Having now the necessary notations, we can write the generalizations of (9) and (10) for all r ∈ N0 as follows

vd, k
r,©1 =

√
k + 1

k!
√

2k

(
d + 1
k + 1

) (
d + 1

2k

)r

·

(
d + 1

2k

)©1
(26)

in the case 1 6 k 6 d, and

vd, 0
r,©1 =

(d + 1)r+1

2
· (d + 1)©1 +

d + 1
2

(27)

if k = 0. Note that we can compute in the same way vd, k
r,N when N is an infinite number different from ©1 , as jet

observed after equation (10).
Recall that Definition 3.1 introduced the equivalence relations ∼ord and ∼eq in full generality, so they determine two
partitions of the extended set of numbers W :=

{
vd, k

r,©1

∣∣∣ d − 2, k, r ∈ N0, 0 6 k 6 d
}

and, therefore, a more complex
version which generalizes Theorem 3.1 would arise, following this line of ideas. But not only; being the elements of
W precise numbers, it is possible to compare in various ways and for several purposes, the values inW, one with the
others or some subsets ofW with others.
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Going even further, it is also possible, by using some other amount of theory and in particular the way to execute
©1 steps each time for many consecutive processes as explained in the already mentioned references, to study the set
of the elements vd, k

r, s , when not only s, but also r can be an infinite number (less or equal to s) of the new computational
system.

5. Conclusions

After recalling the construction of the well known d-dimensional Sierpiński tetrahedron ∆d together with its gen-
erative sequence of polytopes ∆d

n, the starting point of the paper was to find explicit closed formulas for the sum vd, k
n

of the measures of the k-dimensional elements of ∆d
n, for all d and k (Proposition 2.1). From them, we easily deduced

the behavior of the sequences
{
vd, k

n
}
n and in particular the value of their limit vd, k

∞ . Using Sergeyev’s computational
system, we introduced the elements vd, k

©1 and we showed the possibility to operate with the infinite and infinitesimal
quantities coming out from the sequences

{
vd, k

n
}
n in a handy way, as for finite real values of standard mathematics.

Unlike the elements vd, k
∞ that bring very poor information because they are, for the most part, zero or +∞, the ele-

ments vd, k
©1 seem at first sight quite different from each other, and carry with them rich information about their original

generating sequence. The problem of determining whether all these values are distinct or not, is not trivial and may
also have a negative answer (remember Example 3.1). We have seen that in the major case, it is connected to the
existence of integer solutions of the nonlinear Diophantine system (24), but instead to study directly this problem,
we wanted to understand deeply the similarities, affinities and relationships existing between the elements of the set
W =

{
vd, k
©1

∣∣∣ d > 2 and 0 6 k 6 d
}
. To do this, we introduced by Definition 3.1, two new equivalence relations ∼ord and

∼eq among the numbers of the new computational system based on the grossone, and they produce two partitions of
the set W into equivalence classes [ ]ord and [ ]eq.
Theorem 3.1 (i) concerns the relation ∼ord and gives complete answers about the composition of the relative equiv-
alence classes, about their number in Wd =

{
v j, k
©1

∣∣∣ 2 6 j > d and 0 6 k 6 j
}

(denoted by νd, see equation (15)) and
about a set of minimal representatives (denoted by RW , see equation (16)). Instead, part (ii) of the same theorem
concerns the relation ∼eq and states that every equivalence class [ ]eq in W consists of a single element. As conse-
quences, this in particular allowed us to claim that all the numbers in W are effectively distinct (Corollary 3.1) and the
Diophantine system (24) has no nontrivial solutions (Corollary 3.2).

Lastly, we showed in Section 4 as the unique Sierpiński tetrahedron in dimension d is replaced, if we use the new
computational system, by a whole family of infinitely many Sierpiński d-dimensional tetrahedrons. They give rise to
an even larger family of related values

{
vd, k

r,©1

∣∣∣ d > 2, 0 6 k 6 d, r > 0
}

which generalizes the set W (note that W is
in fact obtained for r = 0), and on which it is possible to deepen into further directions the researches and the results
obtained in this paper.
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[24] C. Reiter, Sierpiński fractals and gcds, Computers & Graphics 18 (1994) 885 –91. doi:http://dx.doi.org/10.1016/0097-8493(94)90015-9.
[25] D. Rizza, Supertasks and numeral systems, in: Y. Sergeyev, D. Kvasov, F. Dell’Accio, M. Mukhametzhanov (Eds.), Proc. of the

2nd Intern. Conf. “Numerical Computations: Theory and Algorithms”, volume 1776, AIP Publishing, New York, 2016, p. 090005.
doi:10.1063/1.4965369.

[26] D. Romik, Shortest paths in the tower of hanoi graph and finite automata, SIAM J Discr Math 20(3) (2006) 610–62.
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