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Abstract. In this work we consider the Cantor-Vitali function c : [0, 1] →
[0, 1], constructed as limit of a sequence of functions {fn}n∈N0

. In partic-
ular, we give formulas for the length of the graph of the approximating
functions and will discuss them, together with the length of the graph of
c, also by using infinity computing.
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1 Introduction

The Cantor-Vitali function c : [0, 1] → [0, 1] is a uniformly continuous and sur-
jective function, defined on the closed interval [0, 1] of the real line and having
the same image. It is also called the Cantor ternary function or Lebesgue’s sin-
gular function, and it has amazing peculiarities: for instance, it is constant on all
countable complementary intervals of the Cantor set and yet it is an increasing
function on the whole domain despite having derivative zero on all these intervals
(see for example [6, 35]).

In the present work we use a definition of c as limit of a convergent sequence
of functions {fn(x)}n∈N0

, where N0 is the set of non-negative integers (see Sect.
2). The area under the fn’s is much less interesting than the length ln of their
graphs for which we give a closed formula depending on n (see (6)).

In Sect. 3 we use the grossone-based computational system introduced by
Y.D. Sergeyev in the early 2000’s: we refer the reader to [30, 33] for detailed
introductory surveys on the subject which show how to work numerically with
infinite and infinitesimals numbers in a very easy and handy way, or to the book
[29] written in a popular way.

With traditional mathematics we can only say that the limit of the lengths
ln is 2 (see (7)). Instead, by using the new system, we can consider a single
sequence or a family of chained ones, obtaining, in this way, a whole range of
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infinitely many distinct values which make the result more refined and accurate.
From geometrical considerations we deduce that all these values (obtained after
any infinite number of steps) are less than 2 and differ from it by infinitesimal
quantity expressed through the new computational method in a precise and
sharp way. Easy examples are explicitly given in (11) and (12).

2 The approximating functions fn and some length
formulas

The functions

fn : [0, 1] −→ [0, 1]

are recursively defined for all integer n ≥ 0 as follows:

f0 := id[0,1],

is the identity on the closed interval [0, 1], i.e. f0(x) = x for all x ∈ [0, 1], and

fn+1(x) :=
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fn(3x− 2), if x ∈ [2/3, 1].

(1)

Note that the graphic of f1 is a polygonal through the 4 points (0, 0), (1/3,
1/2), (2/3, 1/2), (2/3, 1). Similarly the graph of f2 is a polygonal through the
8 points
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as Fig. 1(c) shows. It is then possible to determine the graphic of fn as a polyg-
onal through 2n+1 points, giving them in a recursive way as for formula (1).

We can also say that the graph of f1 is made up by 2 oblique line segments
equal to the diagonal of the rectangle

[
0, 1

3

]
×

[
0, 1

2

]
except for translations

parallel to the axes, and 1 horizontal segment line. Then, the graph of f2 is
constituted by 22 oblique segment lines equal to the diagonal of

[
0, 1

32

]
×
[
0, 1

22

]
except for translations parallel to the axes, and 1 + 2 = 22 − 1 horizontal line
segments. In general we can write the following

Remark 1. For all n ∈ N0, the graph of fn is made up by 2n oblique line segments
equal to the diagonal of the rectangle[

0,
1

3n

]
×
[
0,

1

2n

]
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(a) f0(x). (b) f1(x). (c) f2(x).

Fig. 1. The first three approximations of the Cantor-Vitali function.

except for translations parallel to the axes, and 2n−1 horizontal line segments.4

Hence, the graph of fn consists of a total of 2n+1 − 1 line segments through 2n

points, whose ends are (0, 1) and (1, 1).

For the area subtended by the functions fn the result is trivial. If we define

an :=

∫ 1

0

fn(x) dx

for all n ∈ N0, we have

a0 =
1

2
and an+1 =

1

3
+ 2 · 1

3
· 1
2
· an ∀n ∈ N0, (2)

from which we get

an =
1

2
∀n ∈ N0.

Note that at the same result for an we can arrive through considerations of
symmetry of fn with respect to the point (1/2, 1/2).

Now let ln be the length of the graph of the function fn, where n ∈ N0. From
Fig. 1(a-c) it is immediate that

l0 =
√
2, l1 =

1 +
√
13

3
, l2 =

5 +
√
97

9
. (3)

To find a formula for ln we cannot use the same method seen in (2) for an. This
because the area of a figure changes linearly with respect to both its width (say
x-size) and its height (say y-size), but the length of a curve does not. Obviously,
the length of a curve does not vary linearly even with respect to the distance

4 We can obviously specify the number of segments length 1/3, 1/9, etc., but this is
not relevant in this paper and it is not relevant for the subsequent computation of
ln.



4 L. Antoniotti et al.

between its two extremes. A simple example is obtained by comparing the two
ratios

l1
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=
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√
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3
√
2

≈ 1.085539

and
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≈ 1.095427,

where ∥(x, y)∥ =
√

x2 + y2 is the Euclidean norm of a vector (x, y) ∈ R2 and λ
denotes the length of the graph of f2 moving from (0, 0) to (1/3, 1/2).

To find a formula for ln, therefore, we use another strategy. Recalling Remark
1, we know that the graph of fn is made up by 2n oblique line segments, i.e. 2n

diagonals of length √(
1

3n

)2

+

(
1

2n

)2

, (4)

and 2n − 1 horizontal line segments for a total length equal to

1− 2n · 1

3n
(5)

(just remove from the length of the unit segment [0, 1] the projections on the
x-axis of the 2n oblique segments). Therefore, from (4) and (5) we conclude that

ln = 1−
(
2

3

)n

+

√
1 +

(
2

3

)2n

, (6)

for all integers n ≥ 0. In fact, we note that, for n = 0, 1, 2, we recover respectively
the values in (3).

3 Highlights using the grossone system

Using standard analysis, all we can say on the behavior of the sequence (6) when
n approaches infinity is that

lim
n→∞

ln = lim
n→∞

1−
(
2

3

)n

+

√
1 +

(
2

3

)2n

= 2, (7)

and this is consistent with the observation that taking x- and y-projections of
the 2n+1 − 1 line segments which constitute the graph of fn, they go to cover
the two segments

[0, 1]× {0} and {0} × [0, 1]
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without overlays, and the slope of the oblique segments approaches +∞.
In the remainder of this section, as already announced in the Introduction,

we will use the grossone-based system introduced by Sergeyev in the early 2000s
to say something different and more precise than the limit in (7).

The grossone-based numeral system, roughly speaking, is founded on two dif-
ferent fundamental units: the ordinary unit 1 which give rise to natural numbers,
integers, rationals, etc. and a correspondent “infinite unit” ① called grossone,
which generate a whole range of infinite numbers like

①, 2①, −①, −5①,
3

7
①, −9

7
①, (8)

and also numbers with a finite and an infinite part like

① + 6, 3① − 1, −① +
4

3
, −5①2 + 7① −

√
6,

8

7
①4 − 5

7
① + 63, (9)

etc. Introducing ① implies to introduce also infinitesimal numbers, i.e. inverses
of infinite numbers, like

1

①
, ①−3/2, 5①−6 + 7①−5/2, ①−5/2 − ① + 2

①3 − 4① + 4
, (10)

and, obviously, additions, multiplications, divisions between elements as in (9)
and (10).

Much more details on the grossone-based system can be found in Sergeyev’s
papers [30, 33] or the popular book [29]. In recent years many applications of the
grossone system have been found, for example to fractals (see [4, 7, 8, 32]) and
blinking fractals (see [12, 31]), summations, ordering, probability, game theory
(see [13–16, 27, 34] and the references therein), optimization, differential equa-
tions, Infinity Computer (see [1, 5, 17, 19]), and many other fields. Links with
logic, mathematics foundations, Fibonacci numbers and unimaginable ones can
be found in [9–11, 21–23]), and very interesting are also a series of recent didactic
studies and experimentations in schools about the grossone systems (see [2, 3,
18, 20, 24–26, 28]).

Applying grossone to Cantor-Vitali function allows us to make mare precise
computations. For the areas an we have no changes because it is constant for all
n. Instead, for the length ln of the graphic of the approximation function fn(x),
we get a different result depending on the infinite level n. For instance, if n = ①
we get from (6)

l① = 1−
(
2

3

)①

+

√
1 +

(
2

3

)2①

, (11)

which is strictly less than 2, but it differs from it by an infinitesimal quantity. We
can also decrease this infinitesimal difference by considering chained sequences
(see [29, 30, 33]). For example, in virtue of the monotonicity of (6), clear from
the geometric discussion made above, we get that

l5①/2+6 = 1−
(
2

3

)5①/2+6

+

√
1 +

(
2

3

)5①+12

(12)
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is strictly greater than (11) and strictly less than 2. Now it should be clear how it
is possible to give precise numerical values not only to infinite quantities, but also
to infinitesimal ones. Making comparisons between them is then straightforward
through the new system.
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