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Abstract. This paper deals with a continuous class of octagons, built
from the so-called “sequence of Carboncettus octagons”. We first explain
the building techniques, then we study the main properties and make
comparisons with the original sequence (which gives a discrete family of
octagons) and some related ones. Finally, in the last part of this work,
we also study the behavior of this new continuous family of octagons by
adopting the lens of the infinity computing.
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1 Introduction

This paper contains some notes on a new continuous family of octagons that
arises from the so-called sequence of Carboncettus octagons (see [10, 11]). But
while the sequence of Carboncettus octagons is a discrete family, in this paper
we will study a family that originates from it, and whose elements depend on a
parameter that varies in a continuous interval, i.e. an interval of real numbers.

We call our continuous family and its element Carboncettus-like octagons,
often abbreviated in the following as CL octagons. For the historical origins of
the name Carboncettus we refer the reader to [29].

In this work we also make some comparisons between the new octagons fam-
ily, the original sequence {Cn}n of Carboncettus octagons, and the sequence
of the “normalized” Carboncettus octagons {CN

n }n (see [11]). In this perspec-
tive the use of infinity computing assumes a very important role and gives very
interesting advantages, as we show in Sect. 4.

In order to construct our sequences, for some calculations and for the figures
necessary to our discussion, we have used the software GeoGebra (see [18, 19]).
We point out that, in this context, both the use of infinity computing and the use
of a software like GeoGebra can have very interesting educational implications.
For example, they could be very useful in the study of the transition phase from
discrete to continuum mathematics (see [17, 20, 23, 24, 34–37]).

2 The original octagons sequences {Cn}n and {CN
n }n

In this section we recall the construction of the original sequence {Cn}n of Car-
boncettus octagons (see [11, 10]). The building procedure is as follows:
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- We take two concentric circles with their centers at the origin of the axes
and we draw four tangent lines to the inner circumference, each one parallel
to a coordinate axis.

- The points where the tangents intersect the outer circle are the vertices of
an octagon.

The main characteristic of the sequence {Cn}n is that each octagon is obtained
by using two consecutive Fibonacci numbers, but both with odd or even indexes.
In other words, the n-th Carboncettus octagon Cn is originated by starting from
an inner circumference of radius equal to the n-th Fibonacci number φn, and
an outer circumference of radius φn+2. We remark that at least starting from
C4, all the octagons of the sequence {Cn}n are almost regular, i.e. completely
indistinguishable from a regular octagon (see [11, 10, 29]).

Regarding to the sequence {CN
n }n, the normalized radii of the circumferences

are φn/φn (for the internal radius) and φn+2/φn (for the external one). For the
external normalized radius we get:

lim
n→∞

φn+2

φn
= lim

n→∞

φn+2

φn+1
· φn+1

φn
= φ2,

where

φ =
1 +

√
5

2
(1)

is the golden ratio and, consequently,

φ2 =
3 +

√
5

2
. (2)

Hence we can conclude that the sequence {CN
n }n converges to a “limit oc-

tagon” inscribed inside a circumference with radius φ2.

3 The new continuous family of octagons

In this section we present a new class of octagons, whose constructive model is
derived from the one used for {Cn}n and {CN

n }n. Then we will discuss some
properties and characteristics of the elements of the new family. In Fig. 1 the
building model for the CL octagons is represented. In Fig. 2 a detail of the CL
octagon when r = 0.1.

3.1 General characteristics of the CL octagons

We can summarize the building procedure for the new class of octagons in the
following steps:

- We identify two concentric circumferences.
- We draw the two horizontal tangents and the two vertical tangents to the
inner circumferences.
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Fig. 1. The output of GeoGebra for the CL octagons construction.

- Each tangent line intersects the external circumference at two points.
- We join these points and find an octagon.

The resulting octagon is called a CL octagon to remember the used procedure
to build it. For this new class of octagons the outer circle is kept fixed with unit
radius, while the radius of the inner circle varies continuously within the interval
[0, 1].

At an operational level, with reference to Fig. 1, we can say:

- It arises by construction

|OB| = |OB1| = 1, |OP | = r, r ∈ [0, 1].

- Always by construction it arises

|AP | = 2r.

It can be observed that the construction conditions of the CL octagons are
absolutely compatible with geometric constraints of general validity. For exam-
ple, the chord |OB| will always be not greater than |OB1|, where the last is the
radius of the outer circumference.

Since
|OB| = |OB1| = 1,

a consequence of Pythagoras theorem is

|OJ | =
√
1− r2. (3)

Then we find
|PJ | = |OJ | − |OP | =

√
1− r2 − r. (4)
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From the properties of parallelograms we get

|GK| = |KE| = |PJ | (5)

and then
|GE| =

√
2|PJ | =

√
2(
√

1− r2 − r). (6)

So it is possible to identify three functions, defined below, which measure in some
way the ratios between the sides of the octagon CL thus obtained:

θ(r) =
|ED|
|GE|

=
2r√

2(
√
1− r2 − r)

=

√
2r(

√
1− r2 + r)

1− 2r2
, (7)

ρ(r) =
|GE|
|ED|

= θ(r)−1 =
(
√
1− r2 − r)√

2r
, (8)

δ(r) = |GE| − |ED| =
√
2(
√

1− r2 − r)− 2r. (9)

In this way it is possible to study the evolution of these CL octagons when the
radius r = |OP | of the inner circumference varies. In the next section we will
studies the properties and the behavior of these functions.

3.2 The functions θ(r), ρ(r) and δ(r)

Some important information can be deduced from the study of the functions θ(r),
ρ(r) and δ(r) defined above. First of all it should be noted that the functions
will be studied in relation to their “geometric meaning”. For θ(r), (see (7)) we
have: {

1− r2 ≥ 0

1− 2r2 ̸= 0.
(10)

The function ρ(r) instead represents the inverse ratio, in comparison with θ(r).
Referring to ρ(r) (see (8)), we have:{

1− r2 ≥ 0

r ̸= 0.
(11)

Regarding to δ(r) (see (9)) we get:

1− r2 ≥ 0. (12)

Hence we can rewrite the functions θ(r), ρ(r) and δ(r) as follows

θ : Dθ(r) → R, r 7→ |ED|
|GE|

,

ρ : Dρ(r) → R, r 7→ |GE|
|DE|

,
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Fig. 2. The graph of the function
θ(r) (red), ρ(r) (blue) and δ(r) (light blue).

δ : Dδ(r) → R, r 7→ (|GE| − |DE|),
where, by solving (10), (11) and (12), we get

Dθ(r) = [0, 1] \
{√

2

2

}
, (13)

Dρ(r) = (0, 1], (14)

Dδ(r) = [0, 1]. (15)

We now make some considerations for the functions θ(r) and ρ(r). Note that
the function ρ(r) does not exists when r = 0, and the same for the function θ(r)
when r =

√
2/2. Geometrically this occurs with the disappearance of one of the

sides |DE| or |GE|, respectively. When the internal circumference has radius
r = 0, it becomes a single point and the CL octagon becomes a square. Note
that when r =

√
2/2 the CL octagon becomes a square as well.

By convenience, we denote an element of the new continuous family of oc-
tagons by Or, where the subscript r ∈ [0, 1] represents the radius of the internal
circumference. In Fig. 2, the graphs of the functions θ(r), δ(r) and ρ(r) are
represented by different colors.

Obviously all the elements of the sequence {CN
n }n is contained in the new

continuous family O := {Or : r ∈ [0, 1]}. In other words, this means that every
normalized Carboncettus octagon CN

n , for all natural numbers n, can be retrieved
in the new family {Or : r ∈ [0, 1]} for a suitable value of the parameter/radius r.
In fact, to get the n-th normalized Carboncettus octagon CN

n we need the value
r = φn/φn+2 for the continuous parameter r. A particular case occurs when
δ(r) = 0 (see (9)), which yields

r =

√
2−

√
2

2
. (16)
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n rint(Cn) rext(Cn) rint(C
N
n ) rext(C

N
n ) φn/φn+2

1 1 2 1 2 1/2
2 1 3 1 3 1/3
3 2 5 1 5/2 2/5
4 3 8 1 8/3 3/8
5 5 13 1 13/5 5/13
6 ... ... ... ... ...
n → ∞ ... ... ... φ2 1/φ2

Table 1. In the second column rint(Cn), which is equal to φn, represents the value
of the internal circumference used to construct the n-th Carboncettus octagon Cn.
Similarly, rext(Cn) is the radius of the external one. Them, the meaning of rint(C

N
n )

and rext(C
N
n ) are now obvious.

A further important fact is that we can find the “limit normalized octagon”
CN

∞ in our family O = {Or : r ∈ [0, 1]}, see Eq. (19) below.
In order to understand better the evolution of the octagon Or when the

parameter r varies, we divide the unitary segment [0, 1] into the following 5
different subsets:

[0, 1] =

[
0,

1

3

)
∪
[
1

3
,
1

2

]
∪

(
1

2
,

√
2

2

)
∪

{√
2

2

}
∪

(√
2

2
, 1

]
. (17)

Note that dome special octagons can now easily recovered in the suitable
subset appearing in the decomposition (17). For example, all the octagons of the
sequence {CN

n }n lie in the interval [
1

3
,
1

2

]
, (18)

and this is a quite remarkable fact. In particular, note that the minimum of the
interval (18) gives CN

2 and the maximum CN
1 , i.e. the first two elements of the

sequence {CN
n }n. Within the interval (18) we also find the limit octagon CN

∞
obtained in correspondence of the value

r =
1

φ2
, (19)

(see (2)). Note also the singleton {
√
2/2} in the decomposition (17): we in fact

already know that the value r =
√
2/2 corresponding to the case where Or

degenerate to a square. The same phenomenon and the same square (with side√
2/2) occurs for r = 0 too, but the square has its vertices on the coordinate

axes in this case. Fig. 3 shows the CL octagon O1/10 which is close to coinciding
with the square O0.

Recall that in (16) we found the value of r correspondent to the regular
octagon, i.e.

r =

√
2−

√
2

2
≈ 0.38268343.
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Fig. 3. The CL octagon O1/10 obtained by choosing r = 1/10.

Note that even such a value of r belongs to the ”principal interval” [1/3, 1/2].
Finally we remark another important fact: the last of the five subsets shown
in the decomposition (17), i.e. the interval (

√
2/2, 1] corresponds to the most

strange octagons, where they lose their convexity (see Fig. 4). Looking at Fig.
4, this phenomenon is due to the fact that a line segment like DE will become
secant for the inner circumference when r >

√
2/2. In fact, in the range of values

(
√
2/2, 1] for r we find a family of self intersecting octagons.
To resume ideas, in Table 2 we list some of the most representatives octagons

Or belonging to our family O.

4 The sequence {Cn}n {CN
n }n viewed through the lens of

infinity computing

In this section we want to give some hints for the study of the original Carbon-
cettus sequence {Cn}n when n grows, by using a newly introduced methodology
called infinity computing or grossone-based numerical system.

In the early 2000s Y. Sergeyev introduced a new numerical system able to
perform computations with infinite and infinitesimal number, in a very easy and
handle way, as we ordinarily do with natural and real numbers. Roughly speak-
ing, such a new system is constructed on two fundamental units: the ordinary 1
for finite numbers and a new unit ①, called grossone, for infinite (and infinitesi-
mal) quantities. We refer the reader to [31, 33] for introductory surveys and also
to [30] for a book written in a popular way. The grossone-based system has today
a number of applications in pure and applied mathematics, as well as in exper-
imental sciences. For example see [1, 5, 15, 16, 33] for applications to differential
equations, game theory and optimization, [4, 7, 8, 13, 14, 28, 32] to fractals, space
filling curves and summations, [9, 26, 33] for some discussions on foundations
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Fig. 4. The CL octagon O9/10 obtained by choosing r = 9/10. It is a self-intersecting
polygon.

and paradoxes, etc. In the last few years Sergeyev’s system has also been used
in didactic experiments in high schools (see for example [2, 3, 21, 22]) and a very
interesting connection with Fibonacci numbers has been explored in [27]. Re-
garding to [2, 22], innovative educational experimentation joining unimaginable
numbers and grossone are described in [12, 25]. As said in the previous sections,
in [11] there are some hints to apply infinite computing and grossone to the se-
quence {Cn}n∈N. Following them, we first point out to the reader that Fibonacci
sequence {φn}n∈N has a least element φ① in the grossone system, and it can be
written for instance as

φ① =

(
1+

√
5

2

)①

−
(

1−
√
5

2

)①

√
5

. (20)

The previous formula is derived from the well known Binet formula for φn

(see [6]). The very relevant thing is that, through the new system, we can pre-
cisely compute various measures of infinitely large octagons. For example the
last element C① of the {Cn} octagons sequence has the following diameter

diam(C①) = 2φ①+2 =

(
1 +

√
5
)①+2 −

(
1−

√
5
)①+2

2①+1
√
5

, (21)

which, for instance, is easily comparable with the one of C①−2:

diam(C①−2) = 2φ① =

(
1 +

√
5
)① −

(
1−

√
5
)①

2①−1
√
5

. (22)

The reader can note that, without the new system, we can just say that

lim
n→∞

diam(Cn) = +∞. (23)
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Value of r Element of {CN
n }n Resulting figure

0 NA Square
1/3 CN

2 Octagon
3/8 CN

4 Octagon
... ... Octagon

φ2 = 3+
√
5

2
CN

∞ Limit octagon√
2−

√
2

2
NA Regular octagon

... ... Octagon
5/13 CN

5 Octagon
2/5 CN

3 Octagon
1/2 CN

1 Octagon
1 NA Square

Table 2. Values of the radius r of the internal circumference associated with Or (first
column ) and the relative value of n as an element of the sequence {Cn}n, when such
n exists (second column).

Many more computations and evaluations are allowed by the new grossone-
based system and with different levels of precision. For example, if we denote by
≈i the equality up to infinitesimals, we have from (21) and (22)

diam(C①) ≈i

(
1 +

√
5
)①+2

2①+1
√
5

, diam(C①−2) ≈i

(
1 +

√
5
)①

2①−1
√
5

.

And we can compute quite easily, up to infinitesimals, the perimeter, the
area, and other measures of C①, C①−2, etc. Anyway, a deeper discussion of such
things and more demanding calculations are beyond the scope of this paper: we
plan to do this and to give full examples in a future work.

5 Conclusions

In this work we introduced a new family of octagons O whose elements vary
continuously on dependence of a real parameter r ∈ [0, 1]. We showed that the
previous known Carboncettus normalized octagons CN

n introduced in [11], are
all recoverable O for suitable values of r belonging to the subinterval [1/3, 1/2] ⊂
[0, 1]. We called an element of the greater family O a Carboncettus-like octagon
(CL octagon for short). We have studied the main properties of the new family
O, also with the help of three suitably defined functions θ(r), δ(r) and ρ(r), but
much work remains to do and we aim to do so in the near future.

In Sect. 4 we finally used the grossone based system to perform a first study
of the original sequence {Cn}n inside the greater family O when n goes to assume
infinite values. In this direction there are many aspects that can be investigated
in the future as well.

Even possible employs, of the material here exposed, in mathematical edu-
cation can be examined in the future. And, lastly, from a theoretical and purely
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mathematical point of view, possible connections with Blaschke’s theorem and
subsequent results could be studied.
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